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A map of sound direction was found in the owl’s midbrain more

than three decades ago. This finding suggested that the brain

reconstructs spatial coordinates to represent them.

Subsequent research elucidated the variables used to compute

the map. Here we provide a review of the processes leading to

its emergence and an updated perspective on how and what

information is represented.
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Introduction
The barn owl’s midbrain contains maps of auditory space

(MASPs) in two interconnected structures: the external

nucleus of the inferior colliculus (ICX) [1] and the optic-

tectum (OT) [2]. The existence of MASPs in the mid-

brain is not unique to barn owls. It has been described in

several other species (rodents, ferret, cat, monkey) [3–6].

However, the resolution and the topographic precision of

the MASPs in barn owls exceed those of any other species

studied.

Mapped representation of space in egocentric coordinates

is a common feature in the somatosensory and visual

systems. The finding that the auditory system possesses

an equivalent representation of space puts it at an even

level. However there is a fundamental difference be-

tween the MASP and the retinotopic/somatotopic maps.

In the latter, the basic structure of the maps results from

the peripheral representation of the sensory information,

which is topographic by nature, whereas the former

emerges by an elaborate computational process that

transforms information of frequency and time into a

two-dimensional map of space. Hence, the MASP is

considered a fine example of a computational map [7]

and since its discovery in 1978 [1] it has served as a model

system to study the neural processing involved in the
www.sciencedirect.com 
computation, representation and calibration of brain

maps.

The synthesis of a two-dimensional MASP involves sev-

eral steps (Figure 1). In the first stage each dimension —

vertical and horizontal — is computed from frequency-

specific neurons; subsequently, both dimensions are com-

bined into space-specific neurons, that is, neurons that are

narrowly tuned to space. To form a map, the space-

specific neurons have to be arranged in the brain with

their preferred-direction being laid systematically along

the spatial axes. In the barn owl this stage is partly

developmentally regulated and partly achieved by experi-

ence dependent learning. In this review we will first

address how the auditory map emerges and theories of

how space is represented; then we will discuss the integ-

ration of the MASP into a multimodal saliency map in the

OT that controls orienting responses.

Emergence of a map of auditory space
In owls, the auditory spatial cues that result from compar-

ing the inputs to each ear, the interaural time difference

(ITD) and interaural level difference (ILD) are orthogo-

nalized by an ear asymmetry. ITD remains correlated

with the horizontal coordinate, like in other species,

whereas ILD varies with elevation [8,9]. Each cue is

computed and processed in parallel pathways [10] that

converge one stage before the MASP first emerges in ICX

[11,12]. Combination selectivity to ITD and ILD results

in the sharp spatial tuning of ICX neurons [13�].

Topography is already present in stages of the pathway

that represent the horizontal and vertical coordinates,

that is, the ITD and ILD pathways. A dorsoventral

gradient of inhibition yields a primordial map of ILD

in lemniscal nuclei [14,15] whereas organized delay

lines underlie the emergence of a map of ITD in the

pontine nucleus laminaris [16,17]. This topography car-

ries over to the midbrain [18�]. At ICX as well, further

processing takes place that enhances spatial tuning and

removes ambiguity [13�,19,20]. It is assumed that the

integration of the ITD and ILD streams preserves each

pathway’s topography in perpendicular dimensions of

the MASP.

Although ITD and ILD alone are sufficient to drive

orienting behavior [8,21], owls as well as mammals can

also rely on spectral cues for locating and identifying

sound sources in space [22,23]. It has been shown that

midbrain space-specific neurons display frequency de-

pendent tuning to ITD and ILD [24,25]. Whether this
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The formation of the owl’s auditory map of space. (a) An illustration of the four steps required to create an auditory map of space (see upper text) and the

information obtained at each step (see lower text). (b) An illustration of a selected part of the auditory pathway leading from the cochlear nuclei to the MASP

in the OT. Boxes indicate brain structures and the text inside the boxes relate to the main type of information represented. The colors code the processing

steps as displayed in the inset. The upper gray bar designates the hypothetical profile of experience-dependent plasticity along the pathway; black

symbolizes sites which demonstrate high levels of experience-dependent plasticity and white low levels. The question mark indicates a site where it is not

known to what extent plasticity takes place. The lower gray bar designates the hypothetical profile of context-dependency along the pathway, black

symbolizes areas whose neural responses depend on stimulus context (history, distracters, among others) and vice versa. Abbreviations — Freq.:

frequency; ITD: interaural time difference; ILD: interaural level difference; CN: cochlear nucleus; LLDp: dorsal nucleus of the lateral lemniscus posterior; NL:

nucleus laminaris; ICC: central nucleus of the inferior colliculus; ICX: external nucleus of the inferior colliculus; OT: optic tectum.
means neurons are tuned to the space-dependent spectral

filtering of the head remains to be demonstrated.

The code in the map
The presence of a map, where a map was unexpected,

constituted strong evidence in support of topography

(‘place’) as a language of the brain. Along this line, focal

lesions of the MASP in owls caused temporary inability to

localize sounds in areas of space corresponding to the

location of the lesions [26]. In addition, microstimulation

studies related location in the map to goal-oriented motor

commands, where stimulation caused head- and eye-

orienting responses toward the area of space represented

in the stimulated region [27,28]. Low intensity micro-

stimulations also primed behavioral responses to auditory

stimuli coming from the represented direction more than

from other directions [29�].
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The response of neurons of the MASP has been related

to behavioral sensitivity and accuracy in the owl’s sound

localization. The ability to resolve ambiguous stimuli

was correlated with single-neuron responses [30,31]. In

addition, the owl’s minimal-angle discrimination could

be predicted by the shape of individual cells’ spatial

receptive fields (RFs) [32�]. However, to what extent is

a single position of the map or the activity of the entire

population taken into account to infer sound direction

is an open question. Recent work has reformulated the

idea of place coding in the owl’s midbrain. This work

provided a solution to the neural representation and

localization behavior, which displays higher frontal

accuracy and a systematic underestimation in the per-

iphery observed in owls and other species [2,33–36].

It was shown that if natural statistics were encoded in

the over-representation of frontal space and in the
www.sciencedirect.com
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Figure 2
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Statistical inference in the owl’s sound localization pathway. Probability distributions as a function of azimuth of the owl’s estimate of sound direction

(blue), prior probability (light blue) and statistics about the sensory input (dashed black) for a sound source located 70 degrees away from the front (true

direction). The estimate of azimuth direction (blue) results from combining the prior (light blue) with the statistical relationship between the sensory

input and the environment (dashed line). Direction is underestimated for locations away from the center matching the owl’s behavior [33]. Prior

information is encoded in the inhomogeneous distribution of preferred directions in the optic tectum (i inset), where frontal space is overrepresented

[2]. Sensory input statistics are represented by the inhomogeneous tuning-curve widths in the optic tectum (ii inset), where curves in the front are

narrower than in the periphery (red curves with horizontal bars). Modified from [37��].
progressive broadening of spatial tuning in the periph-

ery, a population vector could approach Bayesian infer-

ence [37��]. (Figure 2).

Is sound direction alone mapped in the MASP? Lateral

connections in neural maps allow for detecting context-

dependent stimulus features. Already at the level of

ICX, neurons are selective to sound motion [38] and

suppress responses to echoing sounds [39�]. Because

the map is not uniform, for example, there are more

neurons dedicated to frontal space [2], lateral connec-

tivity is likely biased. A surround-suppression bias has

been found, superimposed to the MASP, which could

be related to the heterogeneous spatial tuning of the

population [40]. The dependence on context is further

elaborated in the tectal MASP (see below).
www.sciencedirect.com 
Experience-dependent alignment of visual
and auditory space maps
The MASPs of both the ICX and OT are highly

vulnerable to experience-dependent plasticity, particu-

larly at young age before sexual maturity [41–44]. Both

maps undergo dramatic reorganization as a result of

long-term manipulations of the auditory sense (by ear

plugs [41]) as well as of the visual sense (by prismatic

spectacles [42]). That an auditory manipulation induces

adaptive realignment of RFs [41] is expected and

intuitive. But why would a visual manipulation results

in a reorganization of the MASPs without changes in the

visual map of space [45]? The answer, most likely, is

that for a unified perception it is essential that internal

representations of auditory and visual spaces be

matched. A neural-correlate of this matching may be
Current Opinion in Neurobiology 2014, 24:55–62
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found in the alignment of the auditory and visual maps

in the OT, that is, visual and auditory signals arising

from a particular direction in space are represented in

the same site and co-vary with the anatomical location

of the neurons. Therefore any shift from the normal

alignment between modalities (as brought about by the

prisms effect) triggers plasticity that restores alignment.

Indeed, prismatic experience in barn owls results in a
Figure 3
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systematic shift in auditory RFs, which realigns them

with the visual RFs (Figure 3) [45].

Alignment can be achieved either by shifting the audi-

tory, visual or both maps. Evidence from barn owls and

other species supports the notion that it is the auditory

map that is plastic; changing to align with the visual map

which serves as a template [42,46,47�]. Considering the
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 and anatomy as a result of adaptation to prisms. (a) In a normal barn owl

ments, prismatic spectacles lead to a chronic displacement of the image
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 (OT), where it joins the visual retinotopic map arriving from the retina and

o carry visual spatial information to instruct auditory plasticity in the ICX.

e to which the neurons are tuned. Following a period of several weeks of
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fact that the MASP is computational, depending critically

on precise integration of information from the two ears

across frequency bands, it makes sense for the visual map

to guide the MASP and not the other way around.
Figure 4
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The site of visually guided auditory plasticity has been

identified in the ICX (Figure 3b). Prism-induced changes

in auditory spatial tuning are brought about by rewiring

inputs from the central nucleus of the inferior colliculus to
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embling habituation of the orienting reflex. (a) The histograms show the

f stimuli (200 stimuli). The duration of each stimulus was 200 ms and the

two different stimuli, every 10 repetitions the stimulus was switched

nts where the two stimuli differed only by the ITD values. The lower row
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the ICX [43]. The OT projects topographically back to

the ICX [48,49] giving rise to visual signals that presum-

ably instruct auditory plasticity by ways of Hebbian

learning [50,51�,52]. Having the site of plasticity at the

level of inputs to the ICX, where information converges

across frequencies, allows for frequency specific shifts in

spatial RFs. Such specific shifts have been demonstrated

in the MASP by manipulating the acoustic space with

passive filtering devices [41]. The tectal MASP then

inherits the plastic changes from the ICX MASP, embed-

ding the auditory input in a multimodal, context-depend-

ent, sensory-motor map.

Mapping saliency of the auditory scene
The OT in barn owls, like its homologue the SC, contains

a motor map of gaze directions [27] and is considered part

of the gaze control system. However, evidence from

numerous studies, mostly in primates and cats, demon-

strates that, in addition to coordinating movement, the

gaze control system is involved in the selection of the

most relevant visual target for behavioral response [53–
59]. What about the selection of auditory targets? Is the

MASP in the OT coding saliency to support auditory

stimulus selection? It was recently shown that neurons in

the tectal MASP are robustly sensitive to probability,

preferring stimuli that are rare and unexpected [60��].
Thus, for example, a weak auditory stimulus can elicit

tectal responses that are stronger than responses elicited

by a 25 dB louder stimulus if the weak stimulus is pre-

sented scarcely and the loud stimulus is more common

(Figure 4a) [60��]. This feature was, however, not

observed in the ICX MASP [60��]. Auditory responses

in the tectal MASP undergo adaptation with relatively

long memory; a single, short and weak stimulus can

significantly reduce the response to the same stimulus

if presented up to a minute later [61]. This long term

adaptation, as in habituation, was stimulus specific

(Figure 4b,c) and first emerged in OT [61].

Auditory responses in OT are not only modulated by

stimulus history but also by simultaneous competitive

stimuli. Mysore and colleagues studied cross modal lateral

interactions and showed that the responses to auditory

stimuli are reduced in the presence of visual distracters

and vice versa [62��]. This lateral inhibition was global,

covering the entire frontal space [62��]. Moreover, they

identified a unique ‘switch like’ interaction in which

neurons code the relative saliency between two compet-

ing stimuli [63,64], a property that may facilitate the

selection of the most salient stimulus. In addition it

was shown that microstimulation in the arcopallium gaze

field (AGF), a forebrain area equivalent to the frontal eye

fields [65], changed auditory responses in OT in ways that

resembled top-down modulation by spatial attention

[66��]. Such connections constitute a network through

which task-related information can influence saliency

mapping in the OT [66��].
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Given the well established role of the OT in gaze control

it is not a surprise that electrical microstimulation in the

OT produces head and eye movements in directions

correlated with the position in the MASP [27,28]. How-

ever, recent findings demonstrated that microstimulation

in the OT of the barn owl also induces pupil dilation

responses, independent of gaze movements [29�]. More-

over, low intensity microstimulation can prime the site of

stimulation in the MASP so that the pupil dilation

response to an auditory stimulus presented later from

the corresponding direction is enhanced [29�]. Similar

results have been shown recently in primates [67] and

support the emerging hypothesis that the evolutionary

role of the OT/SC is to select stimuli based on saliency for

directing orienting movements, overt and covert attention

and autonomic responses (reviewed in [68,69]).

Conclusions
Since its discovery, the owl’s map of auditory space has

provided ground for investigating the basis of the neural

code. With time, the idea of a map of sound direction has

evolved into a dynamic perspective of coding over time,

where context and auditory-scene statistics are

represented. This highly specialized creature, whose

survival depends on sound localization, thus allows us

to approach three of the most important questions in

neuroscience: how information is represented, learned

and categorized in the brain.
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